--- title: "Example 1: Using SEAGLE with .txt Input Files" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{example1} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- This tutorial demonstrates how to use the `SEAGLE` package when the user inputs ${\bf y}$, ${\bf X}$, ${\bf E}$, and ${\bf G}$ from .txt files. We'll begin by loading the `SEAGLE` package. ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ```{r setup} library(SEAGLE) ``` If you have your own files ready to read in for ${\bf y}$, ${\bf X}$, ${\bf E}$, and ${\bf G}$, you can read them into R using the `read.csv()` command. As an example, we've included `y.txt`, `X.txt`, `E.txt`, and `G.txt` files in the `extdata` folder of this package. The following code loads those files into R so we can use them in this tutorial. ```{r} y_loc <- system.file("extdata", "y.txt", package = "SEAGLE") y <- as.numeric(unlist(read.csv(y_loc))) X_loc <- system.file("extdata", "X.txt", package = "SEAGLE") X <- as.matrix(read.csv(X_loc)) E_loc <- system.file("extdata", "E.txt", package = "SEAGLE") E <- as.numeric(unlist(read.csv(E_loc))) G_loc <- system.file("extdata", "G.txt", package = "SEAGLE") G <- as.matrix(read.csv(G_loc)) ``` Now we can input ${\bf y}$, ${\bf X}$, ${\bf E}$, and ${\bf G}$ into the `prep.SEAGLE` function. The `intercept = 1` parameter indicates that the first column of ${\bf X}$ is the all ones vector for the intercept. This preparation procedure formats the input data for the `SEAGLE` function by checking the dimensions of the input data. It also pre-computes a QR decomposition for $\widetilde{\bf X} = \begin{pmatrix} {\bf 1}_{n} & {\bf X} & {\bf E} \end{pmatrix}$, where ${\bf 1}_{n}$ denotes the all ones vector of length $n$. ```{r} objSEAGLE <- prep.SEAGLE(y=as.matrix(y), X=X, intercept=1, E=E, G=G) ``` Finally, we'll input the prepared data into the `SEAGLE` function to compute the score-like test statistic $T$ and its corresponding p-value. The `init.tau` and `init.sigma` parameters are the initial values for $\tau$ and $\sigma$ employed in the REML EM algorithm. ```{r} res <- SEAGLE(objSEAGLE, init.tau=0.5, init.sigma=0.5) res$T res$pv ``` The score-like test statistic $T$ for the G$\times$E effect and its corresponding p-value can be found in `res$T` and `res$pv`, respectively.